Capacitor Impedance Formula:
From: | To: |
Definition: Capacitor impedance (Z) is the opposition a capacitor offers to alternating current (AC), combining both resistance and reactance.
Purpose: Understanding capacitor impedance is crucial for designing AC circuits, filters, and signal processing applications.
The calculator uses the formula:
Where:
Explanation: The calculator shows the magnitude of the impedance (ignoring phase information for simplicity).
Details: Capacitor impedance determines how capacitors behave in AC circuits, affecting signal filtering, power factor correction, and frequency response.
Tips: Enter the frequency in Hz and capacitance in farads (1 μF = 0.000001 F). The calculator will determine the impedance magnitude in ohms.
Q1: Why does impedance decrease with frequency?
A: Capacitors conduct better at higher frequencies because the charge/discharge cycle happens faster, resulting in lower opposition to current.
Q2: What's the difference between impedance and reactance?
A: Reactance is the imaginary part of impedance. For a pure capacitor, impedance equals reactance (Z = -jXc).
Q3: How do I calculate for multiple capacitors?
A: For series: sum impedances. For parallel: use reciprocal formula (1/Ztotal = 1/Z1 + 1/Z2 + ...).
Q4: Why is the result negative in the formula?
A: The negative sign indicates the current leads voltage by 90° in a capacitor, but we display magnitude only.
Q5: What's a typical capacitor impedance range?
A: Varies widely - from ohms in power circuits to megaohms in small signal applications, depending on frequency and capacitance.